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SUMMARY

A new class of positivity-preserving, �ux-limited �nite-di�erence and Petrov–Galerkin (PG) �nite-
element methods are devised for reactive transport problems. The methods are similar to classical TVD
�ux-limited schemes with the main di�erence being that the �ux-limiter constraint is designed to pre-
serve positivity for problems involving di�usion and reaction. In the �nite-element formulation, we also
consider the e�ect of numerical quadrature in the lumped and consistent mass matrix forms on the
positivity-preserving property. Analysis of the latter scheme shows that positivity-preserving solutions
of the resulting di�erence equations can only be guaranteed if the �ux-limited scheme is both implicit
and satis�es an additional lower-bound condition on time-step size. We show that this condition also
applies to standard Galerkin linear �nite-element approximations to the linear di�usion equation. Numer-
ical experiments are provided to demonstrate the behavior of the methods and con�rm the theoretical
conditions on time-step size, mesh spacing, and �ux limiting for transport problems with and without
nonlinear reaction. Copyright ? 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

During the last decade, there has been a signi�cant increase in the use of adaptive stencil
methods for convection-dominated �ow and transport problems. In particular, total variation
diminishing (TVD) high-resolution schemes [1–3] have proven to be very e�ective for a
diverse range of applications. These applications include, for example, inviscid and viscous
�ows [4–9], �ow and transport in porous media [10–12], and shallow water equations [13, 14].
This body of work has focused predominately on problems such as oscillations near sharp
fronts and excessive numerical di�usion, with little attention given to problems with nonlinear
reaction. Positivity of the approximate solution is sometimes recognized to be a desirable
attribute, but in many applications may not be a strict requirement. Furthermore, standard
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approaches for maintaining, say, concentration C¿0 may be inadequate or inaccurate (e.g.
one common strategy is to simply set negative nodal solution values to zero).
In TVD �ux-limited methods, a feedback mechanism extracts information from the ap-

proximate solution and uses this information to decide where in the solution domain it is
permissible to increase the accuracy of the di�erence stencil. A shortcoming of this reliance
on a feedback mechanism is that �ux-limited methods are non-linear, even for the case of
linear convection. However, it is increasingly the case that contemporary applications are pre-
dominantly non-linear because of nonlinear reaction terms or constitutive relations. Since these
problems are inherently non-linear to begin with, the added computational e�ort introduced by
a nonlinear �ux-limiting scheme is less signi�cant and worth the potential increase in solution
accuracy. However, the di�culty of preserving positivity of the approximate solution for the
reactive transport problem with these types of formulations still remains.
TVD methods do not necessarily provide positivity-preserving solutions to convection-

dominated transport problems with non-linear reaction terms. Moreover, a lack of positivity
is possible even for simple convection problems in multidimensions, particularly on unstruc-
tured grids. This lack of positivity is in part due to the fact that TVD theory only guaran-
tees positivity for pure hyperbolic conservation laws in one dimension. The theory does not
include problems with di�usion and nonlinear reaction. In recent years, research has been
directed towards developing positivity-preserving �ux-limited schemes for hyperbolic prob-
lems on unstructured grids. These schemes usually satisfy a maximum principle or are based
on positivity of coe�cients. Both of these properties have the advantage of being relatively
easy to satisfy in multidimensions (see References [14, 15] and references therein). In related
work, the maximum principle was used to ensure positivity of �nite-element approximations
to convection-dominated elliptic problems [see Reference [16], references therein]. Recently,
Berzins [17] proposed a modi�cation to the standard Galerkin �nite-element mass matrix with
the aim of preserving positivity of discrete solutions for hyperbolic and parabolic PDEs. In
the present work, a new class of �ux-limited �nite-di�erence and Petrov–Galerkin (PG) �nite-
element schemes are devised for reactive transport problems. These methods employ a new
�ux-limiter constraint that is designed to account for di�usion and reaction. In the case of
pure convection, the new constraint reduces to the well-known TVD condition. Hence, we
refer to the schemes as TVD-like methods. The key point is that, in addition to being high
resolution, the resulting approximate solutions are guaranteed to be positivity preserving. An
outline of the paper is as follows.
The class of reaction–di�usion problems to be analysed is concisely stated in Section

2. Then, in Section 3, we give a �ux-limited �nite-di�erence formulation for a represen-
tative parabolic convection–di�usion–reaction problem. Conditions for mesh spacing, time-
step size, and �ux limiting are given for this formulation that ensure positivity and accu-
racy for solutions of the di�erence equations. These conditions are obtained by requiring
that the matrix of the �nal algebraic system maintain three properties during its evolution
in time: (i) positive diagonal entries, (ii) negative o�-diagonal entries, and (iii) diagonal
dominance. A matrix with these properties is sometimes referred to as a matrix of non-
negative type [16]. In addition, the right hand side vector is required to always have all
positive entries. We show that if the �nal algebraic system meets these requirements, the
approximate solution is guaranteed to be positivity preserving as it evolves in time. In
Section 4, we extend the ideas to construct a Petrov–Galerkin �nite-element method for
this problem class. The method employs quadratic test functions weighted in the upstream
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direction similar to the classical approach [18]. However, the amount of upwind weighting
introduced is now a function of the approximate solution and is limited using a standard
TVD �ux limiter in conjunction with a new limiter constraint that guarantees positivity. As is
typical in standard �nite-element approximations, the �nal form of the algebraic system of dif-
ference equations is dependent on the numerical quadrature employed to evaluate the element
integral contributions. When the element integral contributions are approximated by Newton
Cotes under-integration, we obtain a system matrix identical to that of the �nite-di�erence
method presented previously. It therefore follows that the conditions for mesh spacing, time-
step size, and �ux limiting are the same. A related case is then considered wherein all terms
are integrated as before with the exception of the element mass matrices, which are integrated
using a two-point Gauss quadrature (i.e. consistent mass matrix). The key �nding here is that
positivity preserving solutions of the resulting di�erence equations can only be guaranteed if
the �ux-limited scheme is both implicit and satis�es an additional lower-bound condition on
time-step size. We show that this condition also applies for standard Galerkin linear �nite-
element approximations to the di�usion equation. In Section 5, a non-linear solution algorithm
for the �ux-limiting methods is described along with representative numerical examples that
demonstrate the performance of the new methods. Extension of the 1D scheme to two dimen-
sions is brie�y commented on in Section 6. A detailed treatment of the 2D extension with
numerical experiments is described in a subsequent study. Concluding remarks are provided in
Section 7.

2. CONVECTION–DIFFUSION–REACTION PROBLEM

We consider �ux-limited �nite-di�erence and �nite-element schemes for the prototype
non-linear convection–di�usion–reaction (CDR) equation:

@C
@t
=
@
@x

(
D
@C
@x

)
− @vC
@x

+ R(C) on �× I (1)

We further assume that coe�cient functions v(x), D(x), and reaction term R(C) are su�ciently
well behaved that solutions exist and the subsequent �nite-di�erence and �nite-element models
can be constructed to stated accuracy. For convenience, we will restrict the derivation to
essential boundary conditions

C(0; t)= g0(t)¿0; C(L; t)= gL(t)¿0; t ∈ I (2)

and initial conditions

C(x; 0)=C0(x)¿0; x∈� (3)

where � is a one-dimensional domain �= [0; L], I is the time interval I =(0; T ], C(x; t) is
the scalar solution �eld, and the convective velocity v(x), the di�usion coe�cient D(x), and
reaction term R(C) are given real-valued functions of x and C, respectively.
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3. FINITE-DIFFERENCE APPROXIMATION

In this section, we develop a new positivity-preserving, �ux-limited, �nite-di�erence approxi-
mation to the CDR problem (1). To begin, let � be subdivided into E segments (cells) with
mesh size hi= xi+1 − xi, i∈{1; 2; : : : ; E}. Let �t¿0 denote the time-step size and t n= n�t,
n=0; 1; 2 : : : . Let the di�erence approximation to C at (xi; t n) be denoted by cni and let the
time di�erence approximation be given by

@Ci
@t

∣∣∣∣
tn+�

≈ c
n+1
i − cni
�t

(4)

where tn+�≡ (1− �)tn + �tn+1, 06�61.
We denote the approximation to C(xi; tn+�) as

C(xi; tn+�)≈ cn+�i =(1− �)cni + �cn+1i (5)

Next, let the spatial derivatives at (xi; t n) be approximated by the following cell-centered
di�erences

@
@x

(
D
@C
@x

)n
i
≈ 1
hmi

[
1
hi
Dmi(cni+1 − cni )−

1
hi−1

Dmi−1(cni − cni−1)
]

(6)

and (
@vC
@x

)n
i
≈ 1
hmi
[fni+1=2 − fni−1=2] (7)

where hmi=(hi+hi−1)=2, Dmi=(Di+1 +Di)=2, and fi+1=2 denotes the convective �ux function
f= vc at the center of cell i.
Of particular interest here are problems where the reaction term R(c) in (1) has the form

R(C)≈R(c)= [R1(c)− R2(c)]c (8)

where the individual reaction functions have the property Rk¿0, k=1; 2 for c¿0. A number
of important reaction problems involve rate expressions that can be recast in this form. These
problems involve rate expressions that are polynomial functions of c, rate expressions that
are su�ciently smooth functions of c that can be cast into the appropriate form directly,
or su�ciently smooth functions of c that can be approximated by polynomials. Examples
include zeroth-order kinetics such as radioactive decay (R=−�c, R1 = 0 and R2 =�, where
� is a decay constant), a combination of �rst-order and second-order kinetics to represent
population growth (R=�1c − �2c2, R1 =�1 and R2 =�2c, where �1 and �2 are growth and
decline constants) [19], reactions that are fractional order (R=−�c3=2, R1 = 0 and R2 =�c1=2,
where � is a reaction rate constant) [20], and Monod kinetics used to simulate biodegradation
(R=�c=(K + c), R1 =�=(K + c), R2 = 0, where � is the maximum growth rate and K is the
half-saturation constant [21]; note that in this form R1 would have to be linearized by, for
example, using the previous iterate value for c in the denominator).
In practice it has been observed that more robust results are obtained if the reaction term at

time tn+� is represented by introducing averaging weights �k , k=1; 2. Moreover, we use this
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weighting later in our positivity analysis. Accordingly, let the reaction term be approximated
by

Rn+�i =(1− �1)Rn1icni + �1Rn+11i c
n+1
i − (1− �2)Rn2icni − �2Rn+12i c

n+1
i (9)

where 06�k61, k=1; 2. For reasons that will become clear later, �1 and �2 will in general
not be chosen equal to each other or to �. Although this �exibility introduces an O(�t)
time truncation error when � �= �1 �= �2, it is perfectly permissible since it does not violate
consistency requirements and allows construction of schemes that retain favorable solution
properties such as reduced phase errors and solution positivity. These favorable properties are
due in part to the fact that the sign of reaction term contributions to the �nal matrix system
of approximate equations can always be made to be positive if so desired. For example when
�1 = 0 and �2 = 1 in (9), the reaction contributions to the RHS (i.e. at t n) and to the LHS
(i.e. at tn+1) of the �nal matrix system of approximate equations will both be positive. Such
positive contributions help guarantee positivity (see the comment after (27)) and alleviate
restrictions on time-step size and mesh spacing.
Using (4)–(9), the cell-centered �nite di�erence approximation of (1) at each interior grid

point xi, i=2; 3; : : : ; E, can be written as(
cn+1i − cni
�t

)
hmi =

�Dmi
hi
[ci+1 − ci]n+1 − �Dmi−1

hi−1
[ci − ci−1]n+1 + (1− �)Dmihi

[ci+1 − ci]n

− (1− �)Dmi−1
hi−1

[ci − ci−1]n − �[fi+1=2 − fi−1=2]n+1

− (1− �)[fi+1=2 − fi−1=2]n + (1− �1)Rn1icni hmi + �1Rn+11i c
n+1
i hmi

− (1− �2)Rn2icni hmi − �2Rn+12i c
n+1
i hmi (10)

Following conventional �ux-limiter terminology [4, 6], the �ux function f= vc at cell centers
is given by

fni+1=2 =
1
2 [(f

n
i + f

n
i+1)− sign(vi)(1− �ni )(fni+1 − fni )]; i=1; 2; : : : ; E (11)

where the �ux function at node i is fi= vici and the �ux limiter �ni = �i(�
n
i ) is a function of

the di�erence ratio �i at time t n given by

�ni =
fns+1 − fns
fni+1 − fni

(12)

where we assume that fi+1 − fi¿0 and s= i − sign(vi).
In this study, we consider the following common �ux limiter [22]

�ni =
2�ni
1 + �ni

(13)

For the case of uniform grid size h, if �ux limiter (13) is used in (11), the �ux derivative in
(7) will be approximated to second-order accuracy (O(h2)) [2].
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Flux approximation (11) takes on familiar forms depending on the form or values of �ni .
For example, when �ni =�

n
i , 0, 1 or 2, �ux approximation (11) becomes a two-point upstream-

weighted approximation, a single-point upstream-weighted approximation, a centered-di�erence
approximation, or a single-point downstream-weighted approximation, respectively. Note that
when �ni �=0, 1 or 2, the calculation of �ni at cell centers next to the boundaries (i.e. at x=0
for v¿0 and x=L for v¡0) may require upwind �ux information that is outside the model
domain. In this study we always use a �rst-order single-point upwind approximation at the
cell center next to the upwind boundary, that is, �n1+1=2 = 0, v¿0 and �

n
E+1=2 = 0, for v¡0. This

approach introduces a local �rst-order truncation error near the upstream boundary and has a
negligible e�ect on solution accuracy since the signi�cant solution gradients in test problems
considered here are typically located in the interior of the problem domain away from the
boundary. In this case a standard second-order scheme may also be used near the boundary.
For problems where signi�cant gradients occur near the upstream boundary one can use a
�rst-order approximation in combination with local grid re�nement.
Equations (10)–(12), along with (13), de�ne the �ux-limited �nite-di�erence approximation

at grid point xi. Observe that because limiter �ni is a function of the approximate solution c
n,

the algorithm is nonlinear if any of the weighting parameters �, �1, or �2 are nonzero, even
if the original PDE problem is linear. Conditions on �ni and �t necessary to ensure a positive
and accurate approximate solution are formulated next.
To simplify the following formulation, we restrict our derivation to the case where sign(v)

¿0. Incorporating (11) into (10) leads to the following �ux-limited �nite-di�erence
approximation to model Equation (1) at each interior grid point xi.

(
cn+1i − cni
�t

)
hmi =

�Dmi
hi
(ci+1 − ci)n+1 − �Dmi−1

hi−1
(ci − ci−1)n+1 + (1− �)Dmihi

(ci+1 − ci)n

− (1− �)Dmi−1
hi−1

(ci − ci−1)n − �(fi − fi−1)n+1 − ��n+1i

2
(fi+1 − fi)n+1

+
��n+1i−1
2
(fi − fi−1)n+1 − (1− �)(fi − fi−1)n − (1− �)�ni

2
(fi+1 − fi)n

+
(1− �)�ni−1

2
(fi − fi−1)n + (1− �1)Rn1icni hmi + �1Rn+11i c

n+1
i hmi

− (1− �2)Rn2icni hmi − �2Rn+12i c
n+1
i hmi (14)

We next formulate the upwind algebraic equivalent of approximation (14). This upwind form
of (14) allows us to use simple linear algebra concepts to derive functional relationships be-
tween the �ux-limiter value, time-step size, node-point spacing, di�usivity, and reaction terms.
These relationships ensure positive approximations to cni . In addition, they ensure that di�er-
ence approximation (14) is locally O(h2) accurate in a Taylor series sense in those regions
where the approximate solution is su�ciently smooth. To recast (14) into an algebraically
equivalent upwind form, we assume that 0¡|�i|6B¡∞ for some �nite constant B and re-
place the downwind convection terms (i.e, fi+1−fi) in equation (14) with upwind di�erence
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terms using Equation (12). Collecting terms we obtain

−cn+1i−1

[
�

(
Dmi−1
hi−1

+ vi−1

(
1 +

�n+1i

2�n+1i

− �n+1i−1
2

))]

+ cn+1i

[
hmi
�t

+ �

((
Dmi−1
hi−1

+
Dmi
hi

)
+ vi

(
1 +

�n+1i

2�n+1i

− �n+1i−1
2

))
− �1Rn+11i hmi + �2R

n+1
2i hmi

]

− cn+1i+1

[
�
Dmi
hi

]
= cni−1

[
(1− �)

(
Dmi−1
hi−1

+ vi−1

(
1 +

�ni
2�ni

− �ni−1
2

))]

+ cni

[
hmi
�t

− (1− �)
((

Dmi−1
hi−1

+
Dmi
hi

)
+ vi

(
1 +

�ni
2�ni

− �ni−1
2

))

+(1− �1)Rn1ihmi − (1− �2)Rn2ihmi
]

+ cni+1

[
(1− �)Dmi

hi

]
(15)

This equation can be written compactly as

an+1ii c
n+1
i −∑

j �=i
an+1ij c

n+1
j =

∑
j
bnijc

n
j =F

n
i (16a)

where the coe�cients in the expression on the left depend on the unknown solution approxi-
mation. We write the corresponding system in matrix form as

An+1cn+1 =Fn (16b)

To ensure positivity we require coe�cients in (16a) and (16b) to satisfy the following two
conditions:

(i) non-negativeness

bij¿0 and aij¿0; j= i − 1; i; i + 1 i=2; 3; : : : ; E (17)

(ii) strict diagonal dominance∑
i �=j
aij¡aii i=2; 3; : : : ; E (18)

We remark that the above conditions are su�cient but not strictly necessary for the numerical
scheme to be positivity preserving.

Theorem
Under conditions of nonnegative initial and boundary data, the approximate solution at each
time step will be nonnegative everywhere provided conditions (17) and (18) are satis�ed.
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Proof
The initial data by de�nition satis�es

c0i¿0; i=1; 2; : : : ; E + 1 (19)

It follows on substitution of (19) in the right side of (15) that F0i in (16) satis�es

F0i ¿0; i=2; 3; : : : ; E (20)

and hence, at each interior grid point i=2; 3; : : : ; E

a1iic
1
i −

∑
j �=i
a1ijc

1
j¿0 (21)

Using properties (17) in (21) we have,

a1iic
1
i¿minj

c1j
∑
j �=i
a1ij (22)

and using (18) it follows that [
a1ii

/∑
j �=i
a1ij

]
c1i¿minj

c1j (23)

Inequality (23) applies at each interior grid point i, until a grid point with a neighbor on a
boundary is reached. Since each boundary value is nonnegative, each adjacent interior grid
point value is also nonnegative. This condition applies to each subsequent interior grid point
and positivity of the approximation everywhere at t1 is guaranteed. Hence we have

c1i¿0; i=1; 2; : : : ; E + 1

Further, because the approximation is nonnegative everywhere, condition (21) is satis�ed for
the subsequent time step and the same line of reasoning as for the �rst time step again applies.
Repeating this process for each time step we get

cni¿0; i=1; 2; : : : ; E + 1 (24)

and by induction the desired result is proved.

Now, let us apply this result to our CDR scheme. Analyzing (15), condition (17) is
satis�ed if

Dmi−1
hi−1

+ vi−1

(
1 +

�ni
2�n+1i

− �ni−1
2

)
¿0 (25)

hmi
�t

+ �
((

Dmi−1
hi−1

+
Dmi
hi

)
+ vi

(
1 +

�ni
2�ni

− �ni−1
2

))
− �1Rn1ihmi + �2Rn2ihmi¿0 (26)
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and

(1− �)
((

Dmi−1
hi−1

+
Dmi
hi

)
+ vi

(
1 +

�ni
2�ni

− �ni−1
2

))

− (1− �1)Rn1ihmi + (1− �2)Rn2ihmi) �=
hmi
�t

(27)

Next recall the comments immediately following equation (9). Note here that conditions are
most favorable for (26) and (27) when �1 = 0 and �2 = 1. This observation provides the main
motivation for introducing parameters �1 and �2 and suggesting the choice � �= �1 �= �2.
To simplify the derivation of conditions that must be placed on �ni to ensure satisfaction of

(25)–(27), we make the following standard assumption [2, 6] for the �ux limiter

�ni =0; if �ni �=0 (28)

Condition (28) gives rise to two consequences: (i) (14) is a standard O(h) upwinded approx-
imation to (1) when the slopes of the approximate solution have opposite signs at grid point
xi and (ii) �ni¿0 when calculated from (13).
Constraint (25) will always be satis�ed for each �ni if

06�ni62
(
1 +

Dmi
hivi

)
(29a)

since �ni =�
n
i ¿0. In convection-dominated problems, the term Dmi=(hivi) is small. Hence, we

choose to replace (29a) by the stronger inequality

06�ni62 (29b)

which is identical to the standard TVD constraint that imposes a maximum bound on the �ux
limiter for hyperbolic problems [2, 6].
Condition (29b) also guarantees that the coe�cients of the velocity terms in (25)–(27),

and hence in (15), are always non-negative.
From condition (26) we obtain the time-step size restriction

1
�t

�= �1Rn1 − �2Rn2 (30)

where we again choose a stronger inequality by neglecting the di�usion term for a reason
that will be come apparent shortly.
Condition (27) is always satis�ed for each xi if

06
�ni
�ni
6

2hmi
vi�t(1− �) −

2
vi

(
Dmi−1
hi−1

+
Dmi
hi

)
+
2(1− �1)
vi(1− �) R

n
1ihmi

− 2(1− �2)
vi(1− �) R

n
2ihmi − 2≡Gn (31)

since �ni¿0. We note that if di�usion and reaction terms are zero, condition (31) reduces to
the standard limiter constraint [6] that is a companion to (29b).
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The diagonal dominance condition (18) is always satis�ed if

hmi
�t

+ ��vi

(
1 +

�ni
2�ni

− �ni−1
2

)
− �1Rn1ihmi + �2Rn2ihmi¿0 (32)

where �vi= vi−vi−1. Note that because of conditions (29b) and (30), (32) is always satis�ed
when �vi= vi − vi−1¿0. However, when �vi= vi − vi−1¡0, the following upper bound for
�ni =�

n
i is required to ensure the diagonal dominance requirement is satis�ed

06
�ni
�ni
6

4hmi
�(|�vi| −�vi)�t −

4�1Rn1i
�(|�vi| −�vi) hmi +

4�2Rn2i
�(|�vi| −�vi) hmi − 2≡H

n (33)

Note that this expression implies that Hn→∞ when �vi¿0 and therefore guarantees that the
�ux limiter is not constrained by (33) when �vi¿0.
In practice, �i is bounded above by relationships (29b), (31), and (33); that is

�ni6min(2; �
n
i G

n; �ni H
n) (34)

In most practical applications, Gn¡Hn since |�vi| will typically be small relative to vi.
Relationships between �t and hmi can be determined from expressions (31) and (33) by

satisfying their lower bounds. That is

2hmi
vi�t(1− �) −

2
vi

(
Dmi−1
hi−1

+
Dmi
hi

)
+
2(1− �1)
(1− �)

Rn1ihmi
vi

− 2(1− �2)
(1− �)

Rn2ihmi
vi

− 2¿0 (35)

and

4hmi
�(|�vi| −�vi)�t −

4�1Rn1i
�(|�vi| −�vi) hmi +

4�2Rn2i
�(|�vi| −�vi) hmi − 2¿0 (36)

For convenience of interpretation, we introduce the cell Courant, Peclet, and Damkholer
numbers, respectively,

Cohi =
vi�t
hmi

(37)

Pevi =
vi

1
2 (Dmi−1=hi−1 +Dmi=hi)

(38)

and

Dnaki=
Rnkihmi
vi

; k=1; 2 (39)

Then (35) and (36) imply that the cell Courant number satisfy

1
Cohi

¿max
(
�
2vi
(|�vi| −�vi) + �1Dna1i − �2Dna2i ;

(1− �)(2 + Pevi) + (1− �2)Dna2iPevi − (1− �1)Dna1iPevi)
Pevi

; 0
)

(40)
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Table I. Conditions for cell Courant number and time-step size.∗

Convection dominated Di�usion dominated
Pevi→∞ v→ 0

� �2 Cohi6 Cohi6 �t6

0 0 1=((2=Pevi + 1) + Da2i) 1=(1 + Da2i) h2=(2D + R2h2)
0 1=2 2=(2(2=Pevi + 1) + Da2i) 2=(2 + Da2i) 2h2=(4D + R2h2)
0 1 1=(2=Pevi + 1) 1 h2=2D
1=2 0 2=((2=Pevi + 1) + 2Da2i) 2=(1 + 2Da2i) h2=(D + R2h2)
1=2 1=2 2=((2=Pevi + 1) + Da2i) 2=(1 + Da2i) 2h2=(2D + R2h2)
1=2 1 2=(2=Pevi + 1) 2 h2=D
1 0 1=Da2i 1=Da2i 1=R2
1 1=2 2=Da2i 2=Da2i 2=R2
1 1 ∞ ∞ ∞
∗�1 = 0 for all cases.

Remarks
In practice, expression (40) is used to determine the upper bound on �t. If we ignore the
contributions on the RHS of (40) from Da2i in the �rst term and Da1i in the second term,
expression (40) can be simpli�ed to yield the stronger inequality

Cohi6min


 1
�
2vi
(|�vi| −�vi) + �1Dna1i

;
Pevi

(1− �)(2 + Pevi) + (1− �2)Dna2iPevi)


 (41)

From (41), we �nd that in the convective limit Pevi→∞

Cohi6min


 1
�
2vi
(|�vi| −�vi) + �1Dna1i

;
1

(1− �) + (1− �2)Dna2i)


 (42a)

and in the di�usive limit v→ 0, this implies

�t6
hmi

(1− �)(Dmi−1=hi−1 +Dmi=hi) + (1− �2)Rn2ihmi)
(42b)

Table I summarizes limits for Coh and �t given by (3.39) for cases where �vi=0, grid
spacing is a uniform h, the di�usion coe�cient is a constant D, and � and �2 take on values
of 0, 12 , and 1. To simplify the limit expressions we set �1 = 0.
From Table I we see that the limits for Coh and �t are independent of the reaction terms

whenever �1 = 0 and �2 = 1. These cases have favourable solution properties (see comments
following equations (9) and (27)) and permit the largest Courant number and time-step size
for �=0, 12 , and 1, respectively. Note that the limits for Coh and �t are determined by the
reaction terms only when �=1, except in the case �2 = 1.
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4. FINITE-ELEMENT APPROXIMATION

Next we develop a �nite-element Petrov–Galerkin formulation for the prototype convection–
di�usion–reaction problem. This formulation employs quadratic test functions weighted in the
upstream direction similar to the classical approach [18]. However, the amount of upwind
weighting introduced now depends on limiter (13) and constraint (34). As is typical in stan-
dard �nite-element approximations, the �nal form of the algebraic system of di�erence equa-
tions is dependent on the numerical quadrature formulae employed to evaluate the element
integral contributions. When the mass and reaction matrices are lumped by Newton-Cotes
under-integration and the remaining contributions are integrated with the usual Gauss rule we
obtain a system matrix identical to that of the �nite-di�erence method presented previously.
It therefore follows that conditions for mesh spacing, time-step size, and �ux limiting are the
same. We then consider the case wherein all terms are integrated as just described with the
exception of the element mass matrices, which are integrated using a two-point Gauss quadra-
ture (i.e. consistent mass matrix). We �nd that positivity preserving solutions of the resulting
algebraic equations can only be guaranteed if the �ux-limited scheme is both implicit and sat-
is�es an additional lower-bound condition on time-step size. We show that this condition also
applies for standard Galerkin linear �nite-element approximations to the di�usion equation.
Returning to the governing equation (1) and introducing a test function w, we proceed in the

usual manner from weighted-residual concepts to construct a weak semi-discrete formulation
as follows. Projecting with the test function and applying the Gauss-divergence theorem to
both the di�usion and convection terms, the semi-discrete weak integral statement is: �nd
C ∈H satisfying the essential boundary conditions (2) and initial conditions (3) such that∫ L

0

@C
@t
w dx=

∫ L

0

[
−@w
@x

(
D
@C
@x

)
+ vC

@w
@x
+ R(C)w

]
dx (43)

holds for all admissible w∈W with w=0 at x=0 and x=L. Here H and W denote trial and
test spaces.
Introducing the �nite-element discretization and trial and test subspaces Hh and Wh of H and

W respectively, we obtain from (43) a corresponding Petrov–Galerkin �nite-element problem:
For t ∈ I , �nd c∈Hh satisfying the essential boundary conditions and initial conditions and
such that ∫ L

0

@c
@t
wh dx +

∫ L

0

[
@wh
@x

(
D
@c
@x

)
− f @wh

@x
− R(c; t)wh

]
dx=0 (44)

for all wh ∈Wh with wh=0 at x=0 and x=L. In (44), f again denotes the convective �ux
function f= vc.
In the Petrov–Galerkin method developed here, the trial and test spaces consist of standard

piecewise linear functions and quadratic upwind biased functions, respectively. It is important
to note that the amount of upwind biasing speci�ed in the test functions will be an explicit
function of the approximate solution c. This explicit function is constructed based on �ux-
limiting ideas with the positivity preserving algebraic analysis presented in the previous section
now adapted to the PG framework presented here.
As in Section 2, let �= [0; L] be subdivided into E segments (elements) with mesh size

hi= xi+1− xi, i∈{1; 2; : : : ; E}. The approximate solution can be expressed in the standard way
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as the product series expansion

c(x; t)=
E+1∑
j=1
cj(t)�j(x) (45)

where cj(t) are the unknown nodal approximate values and {�j} denote the familiar Lagrange
piecewise-linear ‘hat’ functions

�j(�) =
1
2
(1 + �); �(x)=

x − xj
xj − xj−1 +

x − xj−1
xj − xj−1 ; x∈ [xj−1; xj]

�j(�) =
1
2
(1− �); �(x)=

x − xj+1
xj+1 − xj +

x − xj
xj+1 − xj ; x∈ [xj; xj−1]

(46)

on the patch for node j and �j(�) zero otherwise.
We use the group variable approximation for the convective �ux function f= vc. That is

f(x; t)= vc=
E+1∑
j=1
fj(t)�j(x)=

E+1∑
j=1
vjcj(t)�j(x) (47)

Upwind test functions {whi} are solution-dependent and based on the standard form (for
example, see References [18, 23])

wnhi =�i + sign(v)
!ni
4
(1− �2); x∈ [xi−1; xi]

wnhi =�i − sign(v)
!ni
4
(1− �2); x∈ [xi; xi+1]

(48)

on the patch centered at node i with the maps �(x) de�ned as before and where upwinding
parameter !ni speci�es the amount of upwind bias desired at t

n. In this study, !ni is formu-
lated so that the PG scheme is spatially higher-order accurate (based on local Taylor series
truncation error) in regions where the solution is su�ciently smooth and �rst-order accurate
otherwise. Speci�cally we set

!ni = �(1− �n−); x∈ [xi−1; xi]
!ni = �(1− �n+); x∈ [xi; xi+1]

(49)

where � is a constant, the magnitude of which depends on the numerical quadrature formula
used to evaluate the element integral contributions involving !ni . For example, in (49) � takes
on values of 3 or 1 if two-point Gauss quadrature or two-point Newton–Cotes quadrature is
used, respectively. The ‘limiter values’ �n− and �n+ in (49) are de�ned locally by

�n− = �i−1(�
n
i−1); �n+ = �i(�

n
i ); v¿0

�n+ = �i+1(�
n
i+1); �n−= �i(�

n
i ); v¡0

(50)

where �ni and �
n
i are de�ned previously in (12) and (13), respectively. Note that choices �

n
i =1

and �ni =0, respectively yield the standard Galerkin and fully upwinded PG approximations to
the convective term. Lastly, we see from (49) and (50) that !ni is a function of the gradient
ratio �ni , with its speci�c form dependent on the �ow direction.
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Introducing expressions (45) through (50) into (44) and using the variably weighted time-
stepping scheme (15) and reaction term approximation (9), the non-linear system again has
the form

An+1cn+1 =Bncn=Fn (51)

where

An+1ij =
1
�t

∫ L

0
wn+1hi �j dx + �

∫ L

0

[
@wn+1hi

@x
D
@�j
@x

+
@wn+1hi

@x
vj�j

]
dx

−
∫ L

0
wn+1hi [�1R

n+1
1j − �2Rn+12j ]�j dx (52a)

Bnij =
1
�t

∫ L

0
wnhi�j dx − (1− �)

∫ L

0

[
@wnhi
@x

D
@�j
@x

+
@wnhi
@x

vj�j

]
dx

+
∫ L

0
wnhi[(1− �1)Rn1j − (1− �2)Rn2j]�j dx (52b)

As in the previous �nite-di�erence scheme (16b), conditions on �ni and �t must be imposed
to ensure that the PG approximation given by (51) is positive and higher-order accurate
(based on local Taylor series truncation error) in regions where the approximate solution
is su�ciently smooth. In this study, we consider the case where the integrals in (52a) and
(52b) are ‘lumped’ by integrating approximately using a two-point Newton–Cotes formula,
with �=1 in (49). Performing these integrations and assembling the element matrices, the
resulting discrete �nite-element approximation at each interior grid point xi is(

cn+1i − cni
�t

)
hmi =

�Dmi
hi
(ci+1 − ci)n+1 − �Dmi−1

hi−1
(ci − ci−1)n+1 + (1− �)Dmihi

(ci+1 − ci)n

− (1− �)Dmi−1
hi−1

(ci − ci−1)n − �(fi − fi−1)n+1

− ��
n+1
i

2
(fi+1 − fi)n+1 +

��n+1i−1
2
(fi − fi−1)n+1

− (1− �)(fi − fi−1)n − (1− �)�ni
2

(fi+1 − fi)n +
(1− �)�ni−1

2
(fi − fi−1)n

+(1− �1)Rn1icni hmi + �1Rn+11i c
n+1
i hmi

− (1− �2)Rn2icni hmi − �2Rn+12i c
n+1
i hmi (53)

where we have reintroduced the notation for the �ux function fi= vici at node i (see Equa-
tion (11)). This �nite-element approximation is identical to the �nite-di�erence approxima-
tion (14). Therefore, the analysis following (14) applies here as well, so constraints (34)
and (40) again de�ne the conditions on �ni , h and �t necessary to ensure a stable, positive,
and accurate solution. We remark that (53) would also be obtained if �=3 in (49) and the
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middle integrals in (52a) and (52b) were evaluated using a two-point Gauss formula instead
of the Newton–Cotes formula.
We next consider a consistent mass-matrix case where the �rst integrals in (52a) and (52b)

are evaluated approximately using a two-point Gauss formula while other integrals in (52a)
and (52b) are treated as before. We begin by going directly to the resulting representative
�nite-element approximation corresponding to (53)

1
6

(
cn+1i−1 − cni−1

�t

)
hi−1 +

2
3

(
cn+1i − cni
�t

)
hmi +

1
6

(
cn+1i+1 − cni+1

�t

)
hi

=
�Dmi
hi
(ci+1 − ci)n+1 − �Dmi−1

hi−1
(ci − ci−1)n+1 + (1− �)Dmihi

(ci+1 − ci)n

− (1− �)Dmi−1
hi−1

(ci − ci−1)n − �(fi − fi−1)n+1

− ��
n+1
i

2
(fi+1 − fi)n+1 +

��n+1i−1
2
(fi − fi−1)n+1 − (1− �)(fi − fi−1)n

− (1− �)�
n
i

2
(fi+1 − fi)n +

(1− �)�ni−1
2

(fi − fi−1)n + (1− �1)Rn1icni hmi

+ �1Rn+11i c
n+1
i hmi − (1− �2)Rn2icni hmi − �2Rn+12i c

n+1
i hmi (54)

Following the development presented in Section 3, Equation (54) can be expressed in a form
corresponding to Equation (15):

− cn+1i−1

[
�

(
Dmi−1
hi−1

+ vi−1

(
1 +

�n+1i

2�n+1i

− �n+1i−1
2

))
− hi−1
6�t

]

+ cn+1i

[
2hmi
3�t

+ �

((
Dmi−1
hi−1

+
Dmi
hi

)
+ vi

(
1 +

�n+1i

2�n+1i

− �n+1i−1
2

))
− �1Rn+11i hmi + �2R

n+1
2i hmi

]

− cn+1i+1

[
�
Dmi
hi

− hi
6�t

]
= cni−1

[
hi−1
6�t

+ (1− �)
(
Dmi−1
hi−1

+ vi−1

(
1 +

�ni
2�ni

− �ni−1
2

))]

+ cni

[
2hmi
3�t

− (1− �)
((

Dmi−1
hi−1

+
Dmi
hi

)
+ vi

(
1 +

�ni
2�ni

− �ni−1
2

))

− (1− �1)Rn1ihmi + (1− �2)Rn2ihmi
]
+ cni+1

[
hi
6�t

+ (1− �)Dmi
hi

]
(55)

Analysing (55), the positive coe�cient condition (17) is satis�ed if

h2i
�t
66�Dmi (56)
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We remark that (56) implies positivity preserving solutions for the consistent mass matrix
case are only guaranteed for � ¿ 0 and Dmi ¿ 0.

vi−1

(
1 +

�n+1i

2�n+1i

− �n+1i−1
2

)
¿
hi−1
�6�t

− Dmi−1
hi

(57)

and

(1− �)
((

Dmi−1
hi−1

+
Dmi
hi

)

+ vi

(
1 +

�ni
2�ni

− �ni−1
2

)
− (1− �1)
(1− �) R

n
1ihmi +

(1− �2)
(1− �) R

n
2ihmi

))
�= 2hmi
3�t

(58)

Since the lower bound of expression (57) is less than or equal to zero in accordance with
condition (56), it is su�cient for each �ni to again satisfy (recall (29)),

06�ni62 (59)

Also, (58) is always satis�ed for each xi if

06
�ni
�ni
6

4hmi
3vi�t(1− �) −

2
vi

(
Dmi−1
hi−1

+
Dmi
hi

)
+
2(1− �1)
vi(1− �) R

n
1ihmi

− 2(1− �2)
vi(1− �) R

n
2ihmi − 2≡G′n (60)

since �ni¿0.
The diagonal dominance condition (18) is always satis�ed if

hmi
3�t

+ �(vi − vi−1)
(
1 +

�ni
2�n+1i

− �ni−1
2

)
− �1Rn1ihmi + �2Rn2ihmi �=0 (61)

which leads to the condition

06
�ni
�ni
6

4hmi
3�(|�vi| −�vi)�t +

4�1Rn1i
�(|�vi| −�vi) hmi −

4�2Rn2i
�(|�vi| −�vi) hmi − 2≡H

′n (62)

From (59), (60), and (62)

�ni6min(2; �
n
i G

′n; �ni H
′n) (63)

Finally, again introducing cell Courant, Peclet, and Damkholer numbers (37), (38), and (39),
respectively, we obtain the condition

1
Cohi

¿max
(
3�
2vi
(|�vi| −�vi) + �1Dna1i − �2Dna2i ;

3((1− �)(2 + Pevi) + (1− �2)Dna2iPevi − (1− �1)Dna1iPevi)
2Pevi

; 0
)

(64)

and, in addition to (64), �t must satisfy the minimum time-step size requirement given by
condition (56).
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Table II. Conditions for cell Courant number and time-step size.∗

Convection dominated Di�usion dominated
Pevi→∞ v→ 0

� �2 Cohi6 Cohi6 �t6

0 0 2=(3(2=Pevi + 1) + 3Da2i) 2=3(1 + Da2i) 2h2=3(2D + R2h2)
0 1=2 4=(6(2=Pevi + 1) + 3Da2i) 4=3(2 + Da2i) 4h2=3(4D + R2h2)
0 1 2=(3(2=Pevi + 1)) 2=3 h2=3D
1=2 0 4=(3(2=Pevi + 1) + 6Da2i) 4=3(1 + 2Da2i) 2h2=3(D + R2h2)
1=2 1=2 4=(3(2=Pevi + 1) + 3Da2i) 4=3(1 + Da2i) 4h2=3(2D + R2h2)
1=2 1 4=(3(2=Pevi + 1)) 4=3 2h2=3D
1 0 2=3Da2i 2=3Da2i 2=3R2
1 1=2 4=3Da2i 4=3Da2i 4=3R2
1 1 ∞ ∞ ∞
∗�1 = 0 for all cases.

Remark
Following the line of reasoning presented in Section 3 for Equations (41) and (42), we obtain
from (64) the simpli�ed Courant condition

Cohi6min


 1
3�
2vi
(|�vi| −�vi) + �1Dna1i

;
2Pevi

3((1− �)(2 + Pevi) + (1− �2)Dna2iPevi)


 (65)

In the convective limit Pevi→∞ (65) simpli�es to

Cohi6min


 1
3�
2vi
(|�vi| −�vi) + �1Dna1i

;
2

3((1− �) + (1− �2)Dna2i)


 (66a)

and in the di�usive limit v→ 0 we now get

�t6
2hmi

3((1− �)(Dmi−1=hi−1 +Dmi=hi) + (1− �2)Rn2ihmi)
(66b)

Table II presents limits for Coh and �t given by (66) for cases where �vi=0, grid spacing
is a uniform h, the di�usion coe�cient is a constant D, and � and �2 take on values of 0, 12 ,
and 1 as indicated. As before we set �1 = 0.
The results in Table II can be compared with those in Table I for the �nite-di�erence

scheme (and, equivalently, the lumped �nite-element scheme). We immediately see that for
the consistent �nite-element scheme, all limits are reduced by a factor of 2=3 as compared
to the �nite di�erence and lumped �nite-element schemes. Again we see that the limits for
Coh and �t are independent of the reaction terms whenever �1 = 0 and �2 = 1 and permit the
largest Courant number and time-step size for �=0, 12 , and 1, respectively. As before, limits
for Coh and �t are determined by the reaction terms only when �=1, except in the case
�2 = 1.
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5. NUMERICAL STUDIES

We present results of several numerical experiments that were designed to assess the per-
formance of the new �ux-limited reactive transport methods. The test cases include both
hyperbolic and parabolic transport problems with (and without) reaction.

5.1. Solution algorithm

The following solution algorithm is applied in the numerical experiments. Recall that the �ux-
limited scheme presented here is a nonlinear scheme if any of the weighting parameters �,
�1, or �2 are nonzero, even if the original PDE problem is linear. Therefore, the solution cn+1

at the end of the time step must be obtained by iterative solution of a system of nonlinear
equations using, for instance, successive approximation, Newton iteration or a similar scheme.
For example, in our time stepping scheme the solution at the end of the previous time step
provides a good starting iterate and successive approximation is a natural choice in view of
the structure of the non-linear coe�cients in (16b) or (51). Let k denote the iteration level
in a successive approximation scheme within each time step. The system of equations (16b)
or (51) is then linearized at each iteration by evaluating the coe�cient matrix at the current
iterate. That is at each time step n, solve the linearized system

An+1;kcn+1; k+1 =Fn; k (67)

for each iterate k=0; 1; 2 : : : .
A simple solution algorithm for the new positivity-preserving di�erence scheme follows as:

For time step n until N steps
Post-process the solution at t n to obtain �ni and �

n
i (from Equations (12) and (13)) at

each interior node point i. (During this step, constraint (34) on �i must be checked. If the
computed �i exceeds the acceptable limit de�ned by the minimum value of (34), it is set
equal to the acceptable limit. In the present implementation, the acceptable �ni is calculated
and stored in an array.)

For each iterate k until kmax do
If k=0, then
Set �n+1; ki = �ni and R

n+1; k
pi =Rnpi for p=1; 2 and each i=2; 3; : : : ; E.

Else
Post process the solution from iterate k to obtain �n+1; k+1i and �n+1; k+1i at each
interior node point i.
End If
Solve (67) using �ni , R

n
pi (in the R.H.S.) and �

n+1; k+1
i , Rn+1; k+1pi (in the L.H.S.) to

obtain cn+1; k+2

Replace cn+1; k+1 by current estimate cn+1; k+2

If
|cn+1; k+2 − cn+1; k+1|¡	 (test at end of loop or if k= k max) then exit
else continue
Replace cn with cn+1

End For.
End For.
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5.2. Test problems

In the test problems presented here, we assume that the convective velocity v¿0 and di�usion
coe�cient D¿0 are constants in space and time. With these assumptions, and using (8) in
(1), the governing transport equation simpli�es in dimensionless form to

@CD
@T

=D∗ @
2CD
@X 2

− @CD
@X

+Da1CD −Da2CD; 06X61; T �=0 (68)

where

X = x=L; T = vt=L; D∗=D=vL; CD=C=C0; and Dak =RL=v; k=1; 2 (69)

Here, C0 is an arbitrary non-dimensionalizing concentration and all other variables have been
de�ned previously. To facilitate the discussion of the numerical results, �ux-limiter constraints
given by (29b) and (31) are provided here in dimensionless form as

06 �ni62 (70a)

06
�ni
�ni
6

2
Cohi(1− �) −

2
Pevi

+
2(1− �1)
(1− �) D

n
a1i −

2(1− �2)
(1− �) D

n
a2i − 2 (70b)

where Cohi, Pevi, and Daki, k=1; 2 are given by (37)–(39). The latter two parameters are
related to the dimensionless variables in (69) in the following way

Pevi=D∗L=h and Daki=Dakh=L; k=1; 2 (71)

where h is the grid spacing for the uniform grids used in the numerical examples presented
here.

5.2.1. Convection–di�usion–reaction case studies. The scheme is tested for the following
CDR problems:

Case 1: Convective transport of an initial square wave with a decreasing solution.
Case 2: Convective transport of an initial square wave with an increasing solution.
Case 3: Convective-di�usive transport of a solute injected for a short period into the left
end of the problem domain; non-reactive and reactive solutes are considered.

Uniform grids are used with mesh sizes h=1=20 and 1=40. Results for grid Courant num-
bers of 3=8 and 3=4 are computed for both grids using non-dimensional time-step sizes of
�T =0:01875 and 0.0375 with the coarse grid, and �T =0:009375 and 0.01875 with the �ne
grid. The non-dimensionalizing concentration is C0 = 1. Limiter (13) is used for all calcula-
tions. Numerical results computed using new limiter constraint (70b) and the standard TVD
limiter constraint (i.e. (70b) with Pevi=Dna1i=D

n
a2i=0) are compared with analytical solutions

for each case. When the numerical scheme is implicit with either �¿0 or �1¿0 or �2¿0,
nonlinear solutions are computed using 1 iteration only (2 solves per time step).
Case 1: This simple test case can cause numerical di�culties (e.g. excessive numerical

di�usion and spurious oscillations) for many convection and convection-di�usion schemes.
The initial concentration pro�le is

CD0 = 1 if 0:1¡xi¡0:3 and CD0 = 0 otherwise

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 41:151–183



170 R. J. MACKINNON AND G. F. CAREY

For this case the system di�usivity is D∗=1× 10−9 (a non-zero value for D∗ is speci�ed to
avoid zero pivot values in the Gaussian elimination solver routine used to solve system (16b)
at each interaction step). The following simple non-linear reaction is considered:

R= − �C3=2 therefore R1 = 0 and R2 =�C1=2 (72)

This non-linear rate expression represents a practical class of reactions sometimes involving
chain mechanisms [20]. The corresponding system Damkohler number is given by

Da=Da2 =
(
−�C1=20

L
v

)
C1=2D = − �∗C1=2D (73)

In this case we consider a problem that has a relatively high rate of reaction to convection
and set �∗=4.
Since D∗ is negligibly small, the analytic solution to Equation (68) is very close to the

solution to the pure hyperbolic case with D∗=0. This limit case can be written with respect
to a reference frame that moves with the initial solution pro�le. That is,

dCD
dT

= − �∗C3=2D (74)

where material derivative dCD=dT is the time derivative in the moving reference frame
(characteristic frame). This expression can be integrated to yield ([20, p. 29])

CD(T − T0)= CD0
[1 + C1=2D0 (�∗=2)(T − T0)]2

(75)

where CD0 is the initial concentration pro�le at time T =T0.
We �rst demonstrate how the lack of positivity can occur if the standard TVD constraints on

the limiter are used. Figure 1 shows the exact (for the case D∗=0) and computed solution
pro�les at T =0 and 0.3 for the new scheme and the standard scheme for grid spacing
h=1=20 and 1=40 and a Courant number Cohi= 3

4 . These results were obtained from fully
explicit calculations with time-weighting parameters �=0 and �2 = 0. For both grid sizes,
the standard TVD scheme yields negative solution values at the trailing edge of the solution
pro�le whereas the solution obtained using the new scheme is positive everywhere. Both
numerical solutions are similar and slightly out of phase with the exact solution. As expected,
both the accuracy and propagation speed of the approximate solutions improve as the grid
spacing is decreased. It should be noted that negative solution values exhibited by the standard
scheme are nonphysical and unacceptable in (68). This is particularly true when the reaction
term has a nonlinear form such as in (72), which is not de�ned for negative concentration
values and thus will cause the numerical solution to abort. To avoid this problem with the
standard scheme, we set negative solution values to zero when evaluating the reaction term
in (68). We remark that this simple ‘�x’ is only used here to facilitate a comparison between
schemes and to show that the standard scheme will produce unacceptable negative solution
values.
The dependence of the solution pro�les on h, �T , and parameters � and �2 is further

depicted in Figures 2 and 3. Numerical solutions, at T =0:3, are presented for Courant numbers
Cohi=3=8 and 3=4. All results are shown to be positive, including those calculated with the
standard TVD scheme. Moreover, they tend to be slightly more di�usive with increasing
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Figure 1. Square wave with decreasing amplitude at T =0:0 and 0.3 with Cohi=3=4, �=0, �2 = 0,
and h=1=20 (bottom) and h=1=40 (top).

h, increasing �, and decreasing Cohi. These results are consistent with those observed in
standard one-dimensional �rst-order and TVD upwind approximations to wave propagation
without reaction [24]. Results also indicate that increasing the implicitness of the reaction
term improves the propagation speed of the numerical approximation (Figure 2). Interestingly,
the new scheme and the standard scheme give identical results for all cases except the fully
explicit case presented in Figure 1. This behaviour can be easily explained for the implicit
reaction case shown in Figure 2 by the fact that according to condition (70b) when �2 = 1
the new condition reduces to the standard condition (recall that R1 = 0 and D∗ ∼ 0). The other
case in Figure 3 gives identical results because, as the solution becomes more di�use, the
raw limiter value calculated from (13) always falls below the standard and new constrained
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Figure 2. Square wave with decreasing amplitude at T =0:0 and 0.3 with Cohi=3=4, �=0, �2 = 1,
and h=1=20 (bottom) and h=1=40 (top).

values at each grid point as illustrated in Figure 4. In this �gure, results are depicted after 4
time steps (�T =0:0375) for the case Co= 3

4 , h=1=20, �=
1
2 and �2 =

1
2 .

Case 2: In this case, the square wave increases in amplitude as it propagates in the positive
direction. The initial concentration pro�le is

CD0 = 0:5 if 0:1¡xI¡0:3 and CD0 = 0 otherwise

and D∗=1× 10−9. The reaction rate expression is given by

R=�(C − C2) therefore R1 =� and R2 =�C (76)
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Figure 3. Square wave with decreasing amplitude at T =0:0 and 0.3 with Cohi=3=4, �=1=2, �2 = 1=2,
and h=1=20 (bottom) and h=1=40 (top).

This expression represents population growth [19]. The system Damkohler numbers
corresponding to R1 and R2 are given by

Da1 =�C0
L
v
=�∗; Da2 =

(
�C0

L
v

)
CD=�∗CD (77)

Following the same line of development presented for Case 1, the characteristic solution for
the hyperbolic limit is given by ([19, p. 404])

CD(T − T0)= CD0e�
∗(T−T0)

1− CD0(1− e�∗(T−T0)) (78)
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Figure 4. Comparison of raw limiter values calculated from Equation (13) with the standard TVD limiter
constraint and the new limiter constraint (calculated from (44b) with R1 = 0, �2 = 1=2, �=1=2, D=0).

The dependence of the solution pro�les on h, �T , and parameters �, �1, and �2 is depicted in
Figures 5 and 6. Numerical solutions, at T =0:3, are presented for Courant number Cohi=3=4.
Results obtained using a smaller Cohi exhibited the same trends presented in Case 1 and are
not presented here.
In this case, both the standard and new schemes produce positive results as shown in

Figure 5. The reason for this outcome in the fully explicit case can be explained by exami-
nation of equation (70b). Since Da1i¿Da2i the correction to the standard constraint is always
positive or zero if �1 = �2 = 1. Hence, if this correction is neglected as in the standard scheme,
the condition for positivity will still be met. However, because the limiter values in general
di�er slightly between the two cases, the results will also di�er slightly as illustrated in Fig-
ure 5. As shown, the standard scheme is slightly more di�usive at the trailing edge of the
square wave, but it more accurately represents the peak concentration. Di�erences between
the two schemes reduce with decreasing grid spacing. Although not presented here, results
for �=0 and �1 = �2 = 1 were again found to be identical for the new and standard schemes
since the new and standard limiter constraints are equal for this case. Finally, the behavior of
the solutions for di�erent values of �1 and �2 are shown in Figure 6. The standard and new
schemes yield comparable results with the new scheme producing a concentration peak at the
leading edge of the wave. Both schemes yield solutions that travel too fast (�1 = 1, �2 = 0)
or too slow (�1 = 0, �2 = 1) depending on the combination of reaction weighting. However,
for the case �1 = 1 and �2 = 0 the standard scheme produces negative results at the trailing
edge of the wave since (70b) becomes more restrictive for this case.
Case 3: In this test case we consider transport with stronger di�usion both with and without

reaction. For the reactive-transport case we consider �rst-order decay:

R=R2 =−�C (79)
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Figure 5. Square wave with increasing amplitude at T =0:0 and 0.3 with Cohi=3=4, �=0, �1 = 0, �2 = 0
and h=1=20 (bottom) and h=1=40 (top).

The corresponding system Damkohler number is

Da1 =�C0
L
v
=�∗ (80)

At the left end of the problem domain a solute is injected for a short time T60:15 into a
clean solvent, which is �owing left to right. The corresponding essential boundary and initial
conditions are:

CD(0; T )=1 06T60:15; CD(0; t)=0 T¿0:15; CD(1; T )=0 T¿0
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Figure 6. Square wave with increasing amplitude at T =0:0 and 0.3 with Cohi= 3
4 , �=0, h=1=40

�1 = 0, �2 = 1 (bottom) and �1 = 1, �2 = 0 (top).

and

CD(X; 0)=0

At su�ciently early times, the analytical solution to this test case, with and without reaction,
can be represented by well known analytical solutions for an in�nite domain [25] and these
results are used here for comparative purposes.
For this test case D∗=0:0025 so di�usion is not negligible. We �rst consider the case with-

out reaction. Numerical solutions, at T =0:2625 and 0.525, are presented for Courant number
Cohi= 3

4 on grids h=1=20 and 1=40 and for Courant number Cohi=3=8 on grid h=1=40 in
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Figure 7. Solution pro�les for convection–di�usion at T =0:0 and 0.3 with Cohi=3=4, �=0,
and h=1=20 (bottom) and h=1=40 (top).

Figure 7. All solutions are positive. Both the new and standard schemes yield comparable
and good explicit approximations to the exact solution, except the standard scheme develops
a local extremum in the solution at T =0:525. Note that the di�usion term in Equation (31)
becomes more important as the grid is re�ned, leading to increased potential for negative
or oscillatory solution behavior. Again, the new and standard schemes again yield identi-
cal solution pro�les for implicit solutions since the raw limiter values are always less than
the constrained values. Finally, reducing the Courant number while keeping the grid spacing
�xed leads to an improvement in the accuracy of the solution pro�le and the new and stan-
dard schemes become indistinguishable (Figure 8). Also note that the local extremum in the
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Figure 8. Solution pro�les for convection–di�usion at T =0:2625
and 0.525, Cohi=3=8, h=1=40, and �=0.

solution no longer occurs, in part because the di�usion term in Equation (31) becomes less
signi�cant as the leading term increases in magnitude because of the reduction in Cohi.
The preceding calculations were repeated for the case with reaction. The Damkohler number

is set to Da2i=4. Figure 9 shows the solution pro�les at times T =0:2625 and 0.525 for
Cohi= 3

4 and di�erent values of h. Results show trends similar to those presented earlier.
The new scheme produces solutions that are positive with better approximations of the peak
concentration. Further, the standard scheme produces small negative concentrations on both
grids (e.g. on the coarse grid, c(0:3; 0:525)=−6:17× 10−4). For the implicit reaction case (see
Figure 10), the new and standard schemes produced identical solution pro�les for h=1=20
and slightly di�erent solution pro�les for h=1=40. In the latter case the new and standard
limiter values are slightly di�erent because the di�usion term in constraint (31) becomes more
signi�cant as the grid is re�ned.

5.2.2. Consistent mass �nite-element test case. This �nal example illustrates in the present
context how the consistent mass-matrix Galerkin formulation for a model di�usion problem
can produce negative solution values if the lower bound time-step size constraint given by
(56) is violated. The issue of preserving positivity for the di�usion equation has also been
considered in recent work [17, 26]. For this problem v=0, D∗=1:0, �=1:0, and h=1=40.
The boundary and initial conditions for this standard model problem, are, respectively,

CD(0; T )=1; CD(1; T )=0; T¿0

and

CD(X; 0)=0
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Figure 9. Solution pro�les for convection–di�usion–reaction at T =0:2625 and 0.525 with Cohi=3=4,
�=0, �2 = 0, and h=1=20 (bottom) and h=1=40 (top).

At su�ciently early times, the analytical solution to this test problem can be represented by
the well-known analytical conduction solution for an in�nite domain ([27, p. 60]).
From condition (56), we �nd that the consistent mass-matrix Galerkin �nite-element approx-

imation to this simple problem must satisfy a minimum time-step size of �T¿1:04× 10−4 in
order to guarantee a positivity preserving solution. Note that the upper bound on time-step size
is given by (66b). Table III presents illustrative results for the �rst ten grid points after four
time steps for �T =1:0× 10−4 and �T =1:2× 10−4. Positive results were obtained at every
time step and grid point for the case where the time-step size condition was satis�ed (column
5). Negative solution values were obtained when the time-step size restriction was violated

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 41:151–183



180 R. J. MACKINNON AND G. F. CAREY

-0.10

0.10

0.30

0.50

0.70

0.90

1.10

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

X

c D

New Scheme
Exact at nodes
Standard Scheme

-0.10

0.10

0.30

0.50

0.70

0.90

1.10

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

X

c D

New Scheme
Exact at nodes
Standard Scheme

Figure 10. Solution pro�les for convection–di�usion–reaction at T =0:2625 and 0.525 with Cohi=3=4,
�=0, �2 = 1, and h=1=40 (top) and h=1=20 (bottom).

(column 3). Eventually, the negative solution values damped out as the solution evolved in
time.

6. EXTENSION TO MULTIDIMENSIONS

Here we brie�y outline a simple approach for implementing the new scheme in higher di-
mensions. In this approach the algorithm is applied separately in each coordinate direction.
Consider the two-dimensional version of model equation (1) discretized in each direction as

in the 1D case where � is a spatial domain in R2. For simplicity, we assume � is a rectangular
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Table III. Nodal solution results for consistent mass �nite-element case.

Node CD CD CD CD
number x �T =1:0× 10−4 Exact �T =1:2× 10−4 Exact

1 0:00E + 00 1:00E + 00 1:00E + 00 1:00E + 00 1:00E + 00
2 2:50E− 02 2:71E− 01 3:07E− 01 3:00E− 01 3:51E− 01
3 5:00E− 02 2:48E− 02 4:12E− 02 3:91E− 02 6:24E− 02
4 7:50E− 02 −3:48E− 04 2:20E− 03 1:71E− 03 5:19E− 03
5 1:00E− 01 3:57E− 06 4:46E− 05 5:98E− 05 1:94E− 04
6 1:25E− 01 −3:23E− 08 3:34E− 07 1:89E− 06 3:19E− 06
7 1:50E− 01 2:74E− 10 9:14E− 10 5:64E− 08 2:27E− 08
8 1:75E− 01 −2:23E− 12 9:04E− 13 1:62E− 09 6:94E− 11
9 2:00E− 01 1:76E− 14 3:22E− 16 4:54E− 11 9:09E− 14
10 2:25E− 01 −1:36E− 16 4:09E− 20 1:25E− 12 5:06E− 17

domain with sides aligned with the x and y directions and subdivided into E=Ex ×Ey square
cells with h= xi+1 − xi, i∈{1; 2; : : : ; Ex}, h=yj+1 − yj, j∈{1; 2; : : : ; Ey} and the convective
�uxes in the x and y directions, vc and uc, are denoted by fx and fy, respectively. Following
an approach similar to that for the 1D case, we obtain the following su�cient conditions in
the x and y directions, respectively,

06
�nxi; j
�nxi; j

6
2h
ni; j

vxi; j�t(1− �) −
4D
vxi; jh

+
2(1− �1)
vxi; j(1− �) 


n
i; jR

n
1i; jh−

2(1− �2)
vxi; j(1− �) 


n
i; jR

n
2i; jh− 2 (81)

06
�nyi; j
�nyi; j

6
2h(1− 
ni; j)
uyi; j�t(1− �) −

4D
uyi; jh

+
2(1− �1)
uyi; j(1− �)(1− 


n
i; j)R

n
1i; jh−

2(1− �2)
uyi; j(1− �)

(1− 
ni; j)Rn2i; jh− 2 (82)

where �x and �y denote the directional limiters and 
 weights terms according to the magnitude
of the �ux gradient with 06
61. Note that even for the standard hyperbolic case without
reaction an extension of the 1D scheme to 2D obtained by simply applying the 1D scheme
in each coordinate direction will not guarantee positivity. This is because the leading terms
on the R.H.S. of (81) and (82) are in general a fraction of their 1D counterparts. A more
detailed treatment is provided in a subsequent study.

7. CONCLUDING REMARKS

We have presented TVD-like, �ux-limited, �nite-di�erence and �nite-element schemes for
solving the scalar convection-di�usion-reaction equation. Su�cient conditions to ensure that
these schemes are positivity preserving have been derived based on standard linear algebra
concepts. The key contribution is analysis and construction of a �ux-limiter constraint that
is designed to explicitly account for di�usion and reaction. Numerical examples show that
the new schemes are capable of producing both accurate and positive solutions. In particular,
numerical results demonstrate that the accuracy of the new and standard TVD-like schemes
are comparable but the new schemes have the advantage of guaranteed positivity. Both the
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new and standard schemes produce solution pro�les that become increasingly smeared with
increasing �. For the standard TVD scheme, the implicit cases tend to produce more di�use
solution pro�les that lead to raw limiter values that automatically satisfy the upper bound
provided by the new limiter constraint condition. Hence the standard TVD scheme produced
negative values for the explicit (�= �1 = �2 = 0) cases only. Moreover, we emphasize that
the conditions on time-step size, mesh spacing, and �ux limiting that are derived here are
su�cient but not necessary for positivity. How well this �nding holds for problems other than
the ones tested and for problems in multidimensions is not known. Finally, we have shown
that the consistent mass matrix form of the Petrov–Galerkin method will produce positivity-
preserving solutions only if the �ux-limited scheme is both implicit and satis�es an additional
lower-bound condition on time-step size. We show that this result also applies to standard
Galerkin linear �nite-element approximation to the di�usion equation.
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